Composition Matrices, (2+2)-Free Posets and their Specializations
نویسندگان
چکیده
In this paper we present a bijection between composition matrices and (2+ 2)free posets. This bijection maps partition matrices to factorial posets, and induces a bijection from upper triangular matrices with non-negative entries having no rows or columns of zeros to unlabeled (2+ 2)-free posets. Chains in a (2+ 2)-free poset are shown to correspond to entries in the associated composition matrix whose hooks satisfy a simple condition. It is shown that the action of taking the dual of a poset corresponds to reflecting the associated composition matrix in its anti-diagonal. We further characterize posets which are both (2+ 2)and (3+ 1)-free by certain properties of their associated composition matrices.
منابع مشابه
Partition and composition matrices: two matrix analogues of set partitions
This paper introduces two matrix analogues for set partitions; partition and composition matrices. These two analogues are the natural result of lifting the mapping between ascent sequences and integer matrices given in Dukes & Parviainen (2010). We prove that partition matrices are in one-to-one correspondence with inversion tables. Non-decreasing inversion tables are shown to correspond to pa...
متن کاملn ! MATCHINGS , n ! POSETS
We show that there are n! matchings on 2n points without socalled left (neighbor) nestings. We also define a set of naturally labeled (2+2)free posets and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matching...
متن کاملOn (po-)torsion free and principally weakly (po-)flat $S$-posets
In this paper, we first consider (po-)torsion free and principally weakly (po-)flat $S$-posets, specifically we discuss when (po-)torsion freeness implies principal weak (po-)flatness. Furthermore, we give a counterexample to show that Theorem 3.22 of Shi is incorrect. Thereby we present a correct version of this theorem. Finally, we characterize pomonoids over which all cyclic $S$-posets are ...
متن کاملn ! matchings , n ! posets ( extended abstract )
We show that there are n! matchings on 2n points without, so called, left (neighbor) nestings. We also define a set of naturally labeled (2 + 2)-free posets, and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: m...
متن کاملPosets of Finite Functions
The symmetric group S(n) is partially ordered by Bruhat order. This order is extended by L. Renner to the set of partial injective functions of {1, 2, . . . , n} (see, Linear Algebraic Monoids, Springer, 2005). This poset is investigated by M. Fortin in his paper The MacNeille Completion of the Poset of Partial Injective Functions [Electron. J. Combin., 15, R62, 2008]. In this paper we show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011